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Abstract : A rapid synthetir entry towards the pseudoprerosins. o class of dilerpenes which display parent anti- 

in@mmatory and analgesic properties, is described. The key feature of this approach is the use of a sequential 

intromolerular, bwis arid mediared Fried4CrojIs alkylnrion - Friedel-Crafis arylarion sequenre, viz 14 to 15. to 

esmblish the triryrlir carbon framework. 

Few ailments are as painful as those involving inflammation. Common conditions such as arthritis, gout, 
psoriasis and many chemically induced oedemas, though not life threatening, are both debiitating and a cause 

of great discomfort. The search for therapeutic agents that provide an effective treatment for such disorders 

has been the focus of considerable attention; the commercial potential for such a Emedy undoubtedly 

inspiring much of the current effort. One surprising, yet valuable source of new anti-inflammatory agents 

would appear to be marine organisms. ’ These have revealed a diverse anay of structures including the 
manoalides, the scalaranes, the furodysins and the pseudopterosins, which have been shown to be potent 

inhibitors of PLA, activity. The pseudopterosins are of particular significance since they do not act as 

prostoglandin H, synthase. inhibitors.* 

1 pseudopterosin 2 pscudopterosin A 3 pseudopterosin E 

Our interest in the development of useful cascade reaction sequences to accomplish the rapid elaboration 

of complex molecular architectures from simple substrates.’ prompted us to explore a novel entry towards the 

pseudopterosins ‘.s based on a sequential Friedel-Crafts alkylation - Fricdel-Crafts acylation protocol as shown 

in Scheme 1.6 In this lener we wish to report some encouraging preliminary studies that appear to 

demonstrate both the validity and rapidity with which this tactic may be used to accomplish that aim. 
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Scheme I 

To that end, we first prepared the simple analogue 10 through union of the iodolactone 8 with stymne 9 

under standard, tin mediated radical coupling conditions. ‘JJ To our delight, exposure of the lactone 10 to 
ahuninium trichloride produced an easily separable mixture of the desired tricyclic ketone 11 (8%) and the 

bicyclic acid 12 (64%) (Scheme 2).9 

OH OTs I 

6 ‘I 8 9 

Reagents and Conditions: 

a. TsCl, py. CH,Cl,, 16h, ref. 10. b. NaI, acetone, reflux, 6h, ref. Il. 
c. Bu$nH, AIBN, 2.5eq. 9, PhH, reflux. 6h.; aq. KF. d. 3eq. AlCI,, CH,Cl,, C,H,,, reflux, 16h. 

Scheme 2 

Rather than expend considerable effort towards the optimisation of this ‘less than ideal’ model system, we 

chose to examine the closer analogue 14. Once again a tin mediated radical coupling was used to establish 
this material, through union of the iodide 8 with 2,3-dimethoxystyrene 13.8 On thii occasion exposure of the 
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lactone 14 to titanium tetrachloride smoothly effected the sequential Friedel-Crafts alkylation - Fried&crafts 

acylatlon procedure and in addltion unmasked the para-phenolic moiety (Scheme 3). 

8 13 14 15 

Reagents and Conditions: 

a. Bu,SnH, AIBN. 2Seq. 13. PhH, reflux, 3h.; aq. KF. b. 3Seq. TiCl,. CH,Clz. mflux, 36h. 

Scheme 3 

The latter observation is of particular importance given the necessity to differentiate between the two 

phenolic groups when attaching the respective glycosidal residues. Moreover, when we examined the ketone 

15 for optical activity we observed [a],‘6 = +l.O” (CHC13, c = 1.02). This clearly indicates that the initial 

Friedel-Crafts alkylation proceeds. at least in part, with inversion of configuration about the lactone centre. 
Unfortunately, our efforts to determine the level of enantiomeric excess have thus far proved intractable. 

However, a failure to detect intermediates arising from the homolysis of the lactone prior to cyclisation and 

the report by Brauman et al. that the intermolecular variant of this process occurs with nearly 50% net 
inversion of configuration’* are clearly encouraging. 

We are presently investigating the extension of this tactic towards the pseudopterosins via the Corty 
intermediate 5. It is hoped that this will not only provide the most rapid and concise entry to this valuable 

class of natural products, but in addition demonstrate further the synthetic potential of lactones to act as the 

electrophilic component in asymmetric and intramolecular Friedel-Crafts alkylation processes. 
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